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Abstract

In the present paper a method is proposed to investigate the effects of a rigid internal body on the coupled vibration

of a partially fluid-filled cylindrical container. The internal body is a thin-walled and open-ended cylindrical shell. The

internal body is concentrically and partially submerged inside a container. The radial and axial distances between

the internal body and the container are filled with fluid. Along the contact surface between the container and the fluid,

the compatibility requirement for the fluid–structure interactions is applied and the Rayleigh–Ritz method is used to

calculate the natural frequencies and modes of a partially fluid-filled cylindrical container. The fluid domain is

continuous, simply connected, and non-convex. The fluid is assumed to be incompressible and inviscid. The velocity

potential for fluid motion is formulated in terms of eigenfunction expansions for two distinct fluid regions. The resulting

equations are solved by using the Galerkin method. The results from the proposed method are in good agreement with

experimental and numerical solutions available in the literature for the partially water-filled cylindrical container

without internal body. A finite element analysis is also used to check the validity of the present method for the partially

water-filled cylindrical container with internal body. The effects of the fluid level, internal body radius, and internal

body length on the natural frequencies of the coupled system are also investigated.
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1. Introduction

Dynamic behavior of structures coupled with fluid is of great importance in various scientific and engineering

applications, such as fluid-storage tanks, fuel tanks of space vehicles, dam-reservoir systems, nuclear reactors, and

tower-like structures (Jadic et al., 1998; Ergin and Temarel, 2002; Biswal et al., 2004; Krishna and Ganesan, 2007). Due

to the vibration of the structural surface, the pressure changes which induces reactive forces on the surface and makes

the problem complicated. The solution methods for the free-vibration analysis of fluid–structure interaction problems

can be classified into two groups, the analytical and numerical methods. In this paper, an analytical method for

fluid–structure interaction problems is proposed.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a container radius

b internal body radius

E Young’s modulus

H fluid level

h internal body length

Ks stiffness matrix of the shell

L container length

Ms mass matrix of the shell

ML mass matrix of the fluid

r, y, x longitudinal, circumferential, radial coordi-

nates

u(x, y) axial displacement of the shell

v(x, y) circumferential displacement of the shell

w(x, y) radial displacement of the shell

bs eigenvalue of sth mode of a clamped-free

beam

lm ð2m� 1Þðp=2HÞ

n Poisson’s ratio

rL mass density of the fluid

rs mass density of the shell

j̃ðr; y; x; tÞ velocity potential of the fluid

jI(r,y,x) deformation potential in region (I)

jII(r,y,x)deformation potential in region (II)

cs(x) beam eigenfunction associated with eigen-

value bs

o circular frequency
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Numerous research on fluid–structure interaction problems have been conducted by different analytical approaches

such as the eigenfunction expansion method (Kondo, 1981), the Galerkin method (Cheung and Zhou, 2002; Yamaki

et al., 1984), the Rayleigh quotient method (Zhu, 1994), the Rayleigh–Ritz method (Zhu, 1995; Amabili, 1996, 1997a;

Amabili et al., 1998; Jeong, 2006), the collocation method (Mikami and Yoshimura, 1992), and the Fourier series

expansion method (Bauer and Komatsu, 1994; Jeong and Lee, 1998).

Analytical methods are not efficient in studying fluid–structure interaction problems when the system is complex.

A class of such problems involves structures with more than one component. Thus, when the solid coupled with

the fluid is composed of simple components (substructures), a good idea is to use a method for synthesizing

the substructures. A particularly suitable approach for this purpose is the use of artificial springs, simulating the

junctions between the substructures. This technique is applied to model the structures coupled with fluid by Amabili

(1997a, b).

A different class of complex problems involves the introduction of another body (internal body) inside a structure

such as a container. The internal body is partially or completely submerged inside the structure. The convex domain of

the fluid changes to a non-convex domain because of the internal body, whereas the fluid domain is simply connected

and continuous. Evans and McIver (1987) explored the effect of introducing a vertical baffle into a rectangular

container of water on fluid frequencies. The technique involved matching the appropriate eigenfunction expansions on

either side of the baffle and the solution of the resulting integral equation for the horizontal fluid above or below the

baffle. Watson and Evans (1991) extended this technique for a number of similar problems. Gavrilyuk et al. (2006)

proposed fundamental solutions of the linearized problem on fluid sloshing in a vertical cylindrical container having a

thin rigid-ring horizontal baffle. A pressure-based finite element technique has been developed to analyze the slosh

dynamics of a partially filled rigid container with bottom-mounted submerged components by Mitra and

Sinhamahapatra (2007). Maleki and Ziyaeifar (2008) investigated the potential of baffles (horizontal ring and vertical

blade baffles) in increasing the hydrodynamic damping of sloshing in circular-cylindrical storage tanks. Cho et al.

(2002) presented the fluid–structure interaction problems of fluid-storage containers with baffle, a disc-type baffle with

an inner hole, by the structural-acoustic finite element formulation. Biswal et al. (2004) developed a finite element code

and investigated the influence of a baffle, a thin annular circular plate, on the dynamic response of a partially fluid-filled

cylindrical tank.

The previous problems in this class can be divided into two major categories. The first are those which considered the

sloshing problem while the structure and internal body are assumed to be rigid, without considering any interaction

between the fluid and the structure. The second category includes the works which considered the interaction between

the fluid and the structure using numerical techniques. In spite of some achievements in the fluid–structure interaction

problems, the problem as considered in the present paper has not been investigated so far. The main novelty of the

present study is to propose a simple, robust, and efficient analytical method for investigating this class of problems

including the interaction between the fluid and the structure. For brevity, the study is restricted to investigate the

coupled vibration of a partially fluid-filled cylindrical container with an internal body. It is the first time that the effect

of a cylindrical shell as internal body on vibration of fluid container is considered. The internal body has no contact

with the container and is partially submerged inside the container, while the fluid domain is continuous, non-convex,

and simply connected.
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In the present paper, attention is focused on the bulging modes of the partially fluid-filled container without and with

internal body. It can be noted that partially fluid-filled containers have two families of modes: sloshing and bulging ones

(Amabili and Dalpiaz, 1998). Sloshing modes are caused by the oscillation of the fluid-free surface, whereas

bulging modes are related to vibrations of the container walls (Amabili, 1999, 2000a; Koval’chuk and Fillin, 2003).

In the present study, the effects of the free surface waves are neglected. In fact, it is well known that the effect of

the free surface waves is low on bulging modes of structures which are not extremely flexible (Morand and

Ohayon, 1995).

The boundary conditions are assumed to be clamped-free, and the Rayleigh–Ritz method is used to derive the

characteristic equation of the container based on Love’s thin shell theory. The internal body is a rigid, thin-walled, and

open-ended cylindrical shell and is concentrically and partially submerged inside the container. The bottom plate

of the container is assumed to be flat and rigid. Along the contact surface between the container and the fluid,

the compatibility requirement is applied for the fluid–structure interactions. The fluid is assumed to be incompressible

and inviscid. The velocity potential is formulated in terms of eigenfunction expansions appropriate to two distinct

fluid regions which can be matched across their common vertical boundary. The resulting equations can be solved by

using the Galerkin method. The validity of the proposed theoretical method for the partially water-filled cylindrical

container without internal body is verified by comparing the results with those obtained from experimental and

numerical solutions available in the literature. A finite element analysis is also used to check the validity of the present

method for the partially water-filled cylindrical container with internal body. In order to evaluate the dynamic

characteristics of the coupled system, the effects of the radius and length of the internal body and fluid level on the

natural frequencies are also investigated.
2. Mathematical model

Consider a thin-walled cylindrical container of length L, radius a, and thickness t as shown in Fig. 1. The shell of the

container is assumed to be made of an elastic material with Young’s modulus E, Poisson ratio n, and mass density rs.

The bottom plate of the container is considered to be flat and rigid. The radial, circumferential, and axial coordinates

are denoted by r, y, and x, respectively. The container is filled to a height of H with an inviscid and incompressible fluid

of mass density rL. Another cylindrical shell is placed inside the container as internal body (Fig. 1). It is a thin-walled

and open-ended rigid cylindrical shell of length h and radius b and is partially immersed in the container. The internal

body thickness can be neglected in comparison to b and (a�b).
Fig. 1. Configuration of the internal body and the partially fluid-filled cylindrical container.
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2.1. The cylindrical shell of the container

The potential energy for the thin isotropic cylindrical shell is given by (Kim et al., 2004; Soedel, 2003)

US ¼
1

2

ZZ
O

As �2x þ 2n�x�y þ �
2
y þ

1� n
2

�2xy

� ��
þDs k2x þ 2nkxky þ k2y þ

1� n
2

k2xy

� ��
adxdy, (1)

As ¼
Et

1� n2
; Ds ¼

Et2

12ð1� n2Þ
, (2)

where coefficients As and Ds are stretching and bending stiffnesses of the shell, respectively. From Love’s thin shell

theory, the strain and curvature ei, ki, i ¼ x, y, xy in the middle surface are as follows (Kim et al., 2004; Soedel, 2003):

�x ¼
qu

qx
; �y ¼

1

a

q2w

qy2
þ w

� �
; �xy ¼

1

a

qu

qy
þ

qv

qx
,

kx ¼ �
q2w

qx2
; ky ¼ �

1

a2
q2w

qy2
�

qv

qy

� �
; kxy ¼ �

1

a
2
q2w

qx qy
�

qv

qx

� �
, (3)

where u, v, and w are axial, circumferential, and radial displacements of the shell of container on its middle surface,

respectively.

The reference kinetic energy of the shell is given by (Kim et al., 2004; Soedel, 2003)

Tn

S ¼
1

2
rst

ZZ
O

½ðuðx; yÞ2 þ vðx; yÞ2 þ wðx; yÞ2�adxdy. (4)

The Rayleigh–Ritz method is applied to find natural modes of the partially fluid-filled container, and the time

variation is assumed to be harmonic. The admissible displacement functions (Lee and Kim, 1999; Soedel, 2003) for free

vibration of the cylindrical shell with any boundary conditions can be written as

uðx; yÞ ¼
X1
s¼1

Uns
1

as

qCsðxÞ

qx
cosðnyÞ; as ¼

bs

L
,

vðx; yÞ ¼
X1
s¼1

VnsCsðxÞ sinðnyÞ,

wðx; yÞ ¼
X1
s¼1

W nsCsðxÞ cosðnyÞ, (5)

where Uns, Vns, and Wns are the parameters of the Ritz expansion, s and n are axial and circumferential mode numbers.

Cs(x) is used as the axial mode that is the in vacuo beam function, satisfying the imposed boundary conditions.

In this article, the container with clamped-free boundary conditions (clamped at x ¼ 0 and free at x ¼ L) is

considered. As a consequence, Cs(x) is given by

CsðxÞ ¼ cosh
bsx

L

� �
� cos

bsx

L

� �� �
� sm sinh

bsx

L

� �
� sin

bsx

L

� �� �
; sm ¼

coshðbsÞ þ cosðbsÞ

sinhðbsÞ þ sinðbsÞ
, (6)

coshðbsÞ cosðbsÞ þ 1 ¼ 0, (7)

where bs are solutions of Eq. (7).

2.2. Dynamic behavior of the fluid–structure interaction

The usual linearized theory of water wave permits the introduction of a velocity potential for the fluid motion.

Assuming simple harmonic motion of radian frequency o, the velocity potential can be expressed as

j̃ðr; y; x; tÞ ¼ iojðr; y; xÞ eiot; i2 ¼ �1. (8)

In order to compute the time-independent velocity potential, j(r,y,x), the fluid domain (Evans and McIver, 1987;

Watson and Evans, 1991) can be divided into two parts (I, II) as shown in Fig. 2

I ¼ fðr; y; xÞ : robg and II ¼ fðr; y; xÞ : boroag. (9)
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Fig. 2. Configuration of the partially fluid-filled cylindrical container in two dimensions.
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The fluid deformation potential in two regions is assumed to be of the form below (Amabili, 1997b, 1999; Evans and

McIver, 1987; Watson and Evans, 1991)

jI ¼
X1
s¼1

W nsjI
ns; jII ¼

X1
s¼1

W nsjII
ns, (10)

where jI and jII are time-independent velocity potentials and jI
ns and jII

ns are eigenfunctions in regions (I) and (II),

respectively.

It is clear that we can restrict our attention to region (I), and seek function jI(r,y,x) that satisfies conditions (11)–(14)
in that region, provided that at r ¼ 0, jI is zero. so

r2jI ¼ 0, (11)

qjI

qr
¼ 0 fr ¼ b; L� hoxoHg, (12)

qjI

qx
¼ 0 fx ¼ 0g, (13)

dj̃I

dt
¼ 0) jI ¼ 0 fx ¼ Hg, (14)

where j̃I is velocity potential in region (I). This condition (14) states that the pressure on the free surface of the fluid in

region (I) is zero.

For convenience we define

g : ½r ¼ b; xoL� h�; g0 : ½r ¼ b;L� hoxoH�, (15)

where g is the boundary between the two fluid regions and g0 is the contact boundary between the fluid and the internal

body. In the inner fluid region (I), the method of separation of variables gives

jI
ns ¼ cosðnyÞ

X1
m¼1

Amns cosðlmxÞInðlmrÞ; lm ¼ ð2m� 1Þ
p
2H

(16)

which satisfies (11), (13), and (14) and also vanishes on r ¼ 0 as required. In is the modified Bessel function of

order n.
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Now, we can restrict our attention to region (II), and seek function jII(r,y,x), satisfying conditions (17)–(21) in

this region

r2jII ¼ 0, (17)

qjII

qr
¼ 0 fr ¼ b; L� hoxoHg, (18)

qjII

qx
¼ 0 fx ¼ 0g, (19)

dj̃II

dt
¼ 0) jII ¼ 0 fx ¼ Hg, (20)

where j̃II is velocity potential in region (II). This condition (20) states that the pressure on the free surface of the fluid in

region (II) is zero

qjII

qr
¼ w fr ¼ a; 0oxoHg. (21)

In the outer fluid region (II), the method of separation of variables gives

jII
ns ¼ cosðnyÞ

X1
m¼1

cosðlmxÞ½BmnsInðlmrÞ þ CmnsKnðlmrÞ�, (22)

where Cmns and Bmns are unknown coefficients depending on the integer m, n, and s. Kn is the modified Bessel function

of the second kind of order n. The function jII
ns satisfies the boundary conditions given in Eqs. (17), (19), and (20). Using

Eq. (21) and eliminating cos(ny) leads to

X1
m¼1

cosðlmxÞ½BmnsI
0
nðlmaÞ þ CmnsK

0
nðlmaÞ� ¼ CsðxÞ, (23)

where I 0n and K 0n indicate the derivatives of In and Kn, with respect to r. Eq. (23) must be satisfied for all values,

0pxpH. Multiplying this equation by cos(ljx) and then integrating between 0 and H, using the well-known properties

of the orthogonal trigonometric functions, we obtain

Cjns ¼
1

K 0nðljaÞ

2

H

Z H

0

CsðxÞ cosðljxÞdx

�
�BjnsI

0
nðljaÞ

�
. (24)

Here Bjns are unknown coefficients to be determined by the matching process. It is also necessary to ensure that the

potentials and velocities of fluid are continuous along g, and also the remaining conditions (12) and (18) are satisfied

along g0. These conditions can be written as follows:

qjI

qr
ðr ¼ bÞ ¼

qjII

qr
ðr ¼ bÞ on g

0 on g0

8<
:

9=
;, (25)

jII ¼ jI on g, (26a)

qjII

qr
ðr ¼ bÞ ¼ 0 on g0. (26b)

Eq. (25) must be satisfied for all values 0pxpH (on boundary, g+g0). After multiplying this equation by cosðljxÞ

and then integrating between 0 and H, we obtain the following equation:

Amns
H

2
I 0nðlmbÞdjm ¼

X1
m¼1

½BmnsI
0
nðlmbÞ þ CmnsK

0
mnsðlmbÞ�

Z L�h

0

cosðlmxÞ cosðljxÞdx; (27)
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where djm is the Kronecker delta function. Substituting Cmns from (25) in (27), the following systems of equations are

obtained:

½A1�fAnsg ¼ ½A2�fBnsg þ fA3g; ½A1�jm ¼
H

2
I 0nðlmbÞdjm

½A2�jm ¼ I 0nðlmbÞ �
I 0nðlmaÞ

K 0nðlmaÞ
K 0nðlmbÞ

� � Z L�h

0

cosðlmxÞ cosðljxÞdx

fA3gj ¼
X1
m¼1

2

H

K 0nðlmbÞ

K 0nðlmaÞ

Z H

0

CsðxÞ cosðlmxÞdx

� � Z L�h

0

cosðlmxÞ cosðljxÞdx

� �

Ans ¼

A1ns

..

.

Amns

8>>><
>>>:

9>>>=
>>>;
; Bns ¼

B1ns

..

.

Bmns

8>>><
>>>:

9>>>=
>>>;
. (28)

Multiplying Eqs. (26a) and (26b) by cos(ljx) and then integrating along g for (26a) and along g0 for (26b), gives

X1
m¼1

Bmns InðlmbÞ �
I 0nðlmaÞ

K 0nðlmaÞ
KnðlmbÞ

� �
þ

2

H

KnðlmbÞ

K 0nðlmaÞ

� � Z H

L�h

cosðlmxÞ cosðljxÞdx

þ
X1
m¼1

Bmns I 0nðlmbÞ �
I 0nðlmaÞ

K 0nðlmaÞ
K 0nðlmbÞ

� ��
þ

2

H

K 0nðlmbÞ

K 0nðlmaÞ

Z H

0

CsðxÞ cosðlmxÞdx

�

�

Z L�h

0

cosðlmxÞ cosðljxÞdx ¼
X1
m¼1

AmnsInðlmbÞ

Z H

L�h

cosðlmxÞ cosðljxÞdx. (29)

Eq. (29) can be written as

½B1�fAnsg ¼ ½B2�fBnsg þ fB3g; ½B1�jm ¼ InðlmbÞ

Z H

L�h

cosðlmxÞ cosðljxÞdx,

½B2�jm ¼ InðlmbÞ �
I 0nðlmaÞ

K 0nðlmaÞ
KnðlmbÞ

� �Z H

L�h

cosðlmxÞ cosðljxÞdx

þ I 0nðlmbÞ �
I 0nðlmaÞ

K 0nðlmaÞ
K 0nðlmbÞ

� �Z L�h

0

cosðlmxÞ cosðljxÞdx,

fB3gj ¼
X1
m¼1

K 0nðlmbÞ

K 0nðlmaÞ

� Z H

L�h

cosðlmxÞ cosðljxÞdxþ
KnðlmbÞ

K 0nðlmaÞ

Z L�h

0

cosðlmxÞ cosðljxÞdx

�
2

H

Z H

0

CsðxÞ cosðlmxÞdx,

Ans ¼

A1ns

..

.

Amns

8>>><
>>>:

9>>>=
>>>;
; Bns ¼

B1ns

..

.

Bmns

8>>><
>>>:

9>>>=
>>>;
. (30)

The coefficients Amns and Bmns are computed by solving the following system of equations:

½A1�fAnsg ¼ ½A2�fBnsg þ fA3g;

½B1�fAnsg ¼ ½B2�fBnsg þ fB3g:

(
(31)

In order to calculate the natural frequencies and mode shapes, the Rayleigh–Ritz method is used. It is useful to

introduce the Rayleigh quotient (Zhu, 1994; Amabili, 1997a, 2000b) for the systems considered, which is

o2 ¼
US

Tn
S þ Tn

L

, (32)

where US and Tn
S are defined in Eqs. (1) and (4), respectively. The simplified reference kinetic energy of the fluid, Tn

L, is

(Amabili, 1999)

Tn

L ¼
1

2
rL

ZZ
O

jII qj
II

qr

� �
r¼a

adxdy (33)
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by substituting Eq. (21) into Eq. (33), we can write

Tn

L ¼
1

2
rL

Z 2p

0

Z H

0

jIIjr¼awadxdy: (34)

2.3. The eigenvalue problem

For the numerical calculation of the natural frequencies and the parameters of the Ritz expansion of modes, only N

terms in the expansion of u, v, and w (Eq. (5)), and M terms in the expansion of jI
ns and jII

ns (Eqs. (16) and (22)) are

considered, where N and M are chosen large enough to give the required accuracy. So, all the energies are given by finite

summations. It is convenient to introduce a vectorial notation. The vector q of the parameters of the Ritz expansion is

defined by

q ¼

Uf g

Vf g

Wf g

8><
>:

9>=
>;; Uf g ¼

Un1

..

.

Uns

8>><
>>:

9>>=
>>;; Vf g ¼

Vn1

..

.

Vns

8>><
>>:

9>>=
>>;; Wf g ¼

W n1

..

.

W ns

8>><
>>:

9>>=
>>;. (35)

The maximum potential energy of the shell (Eq. (1)), becomes

US ¼
1
2pq

TKsq, (36)

the partitioned matrix Ks is

Ks ¼

½K11� ½K12� ½K13�

½K12�
T ½K22� ½K23�

½K13�
T ½K23�

T ½K33�

2
64

3
75, (37)

where the elements of the submatrices [Kij] (i,j ¼ 1,2,3) are given by

½K11�ij ¼
As

aiaj

a

Z L

0

q2Ci

qx2

q2Cj

qx2
dx

"
þ ð1� nÞ

n2

2a

Z L

0

qCi

qx

qCj

qx
dx

�
,

½K12�ij ¼
Asn

2ai

�2n
Z L

0

q2Ci

qx2
Cj dxþ ð1� nÞ

� Z L

0

qCi

qx

qCj

qx
dx

�
; K13ði; jÞ ¼ �

Asn
ai

Z L

0

q2Ci

qx2
Cj dx,

½K22�ij ¼ Asa
1� n
2
þDs

1� n
2a

� �Z L

0

qCi

qx

qCj

qx
dxþ Ds

n2

a3
þ As

n2

a

� �Z L

0

CiCj dx,

½K23�ij ¼ As

n

a
þDs

n3

a3

� �Z L

0

CiCj dxþDs n
1� n

a

Z L

0

qCi

qx

qCj

qx
dx

��
�
n
a

Z L

0

q2Ci

qx2
Cj dx

��
,

½K33�ij ¼
As

a

Z L

0

CiCjdxþDs a

Z L

0

q2Ci

qx2

q2Cj

qx2
dx

"
þ 2n

n2

a

Z L

0

q2Ci

qx2
Cj dxþ

n4

a3

Z L

0

CiCj dxþ2n2 1� n
a

Z L

0

qCi

qx

qCj

qx
dx

�
.

(38)

The reference kinetic energy of the shell (Eq. (4)), can be written as

Tn

S ¼
1
2
pqTMsq, (39)

where

Ms ¼

½M11� ½0� ½0�

½0� ½M22� ½0�

½0� ½0� ½M33�

2
64

3
75, (40)

where the elements of the submatrices [Mii] (i ¼ 1,2,3) are given by

½M11�ij ¼ arst

Z L

0

qCi

ai qx

qCj

ajqx
dx; ½M22�ij ¼ ½M33�ij ¼ arst

Z L

0

CiðxÞCjðxÞdx: (41)
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The simplified reference kinetic energy of the fluid (Eq. (34)), can be written as

Tn

L ¼
1
2
pqTMLq, (42)

where

ML ¼

½0� ½0� ½0�

½0� 0½ � ½0�

½0� ½0� ½MF �

2
64

3
75 (43)

in which the elements of submatrix [MF] can be written as

½MF �ij ¼ arL

XM
m¼1

Z H

0

cosðlmxÞCjðxÞdx Bmni InðlmaÞ �
I 0nðlmaÞ

K 0nðlmaÞ
KnðlmaÞ

� ��
þ

2

H

KnðlmaÞ

K 0nðlmaÞ

Z H

0

CiðxÞ cosðlmxÞdx

�
.

(44)

Substituting Eqs. (36), (39), and (42) into the Rayleigh quotient (Eq. (32)), and then minimizing with respect to the

coefficients qi, we obtain

Ksq� o2ðMs þMLÞq ¼ 0, (45)

where o is the circular frequency of the container partially filled with fluid. Eq. (45) gives a linear eigenvalue problem

for a real, non-symmetric matrix.
3. Results and discussion

Based on the preceding analysis, the eigenvalue problem (Eq. (45)), is solved to find the natural frequencies and mode

shapes of a partially fluid-filled cylindrical container with and without internal body. To check the validity and accuracy

of the proposed method, the comparisons are made with experimental and FEM results. In the finite element analysis,

the two-dimensional axisymmetric model is constructed with the axisymmetric structural shell element for elastic

structure and axisymmetric fluid element for the fluid region. Shell element is defined by two nodes having four degrees

of freedom at each node: three translations in each direction and one rotation. Fluid element is defined by four nodes

having three degrees of freedom at each node: three translations in each direction (Zienkiewicz, 1977). The radial

velocities of the fluid nodes along the wet surface of the container coincide with the corresponding velocities of the

container. The radial velocities of the fluid nodes along the wet surface of the internal body are zero. In the present

paper, the effects of the free surface waves are neglected; consequently, the time-independent velocity potential j(r,y,x),
of the fluid nodes on the free surface in two regions (I, II) is zero.

The following material properties are used: the container is made of steel with Young’s modulus E ¼ 206GPa,

Poisson’s ratio n ¼ 0.3, and mass density rs ¼ 7850 kg/m3; the fluid is water with mass density rL ¼ 1000 kg/m3.

3.1. Convergence study

To check the convergence of the proposed method, a partially water-filled container with a cylindrical shell as an

internal body and clamped-free boundary conditions is analyzed. This container is partially filled to H ¼ 0.67L and its

dimensions are a ¼ 0.2, b ¼ 0.85a, L ¼ 3a, h ¼ 0.67L, and t ¼ 0.002. Tables 1 and 2 show the convergence of the

proposed method for different number of terms used in the series expansions. From the frequencies presented in these

tables, we conclude that just 15 terms in the series expansions are adequate for convergence.

To validate the proposed theoretical method, the results for a partially water-filled cylindrical container with and

without internal body are compared with those obtained from the finite element analysis, in Table 3. The agreement

between the results is very good and the maximum differences are less than 2% and 4.6% for a partially water-filled

cylindrical container without and with internal body, respectively.

The uncoupled modes and associated frequencies of a partially water-filled clamped-free cylindrical container

without internal body are also obtained by solving the eigenvalue problem (Eq. (45)). The results of the present study

are compared with the experimental measurements and finite element calculations (Mazúch et al., 1996), in Table 4.

Here, the cylindrical container has a length of L ¼ 0.231, radius a ¼ 0.07725, and thickness t ¼ 0.0015. The container is

made of steel, and has the material properties: Young’s modulus E ¼ 205GPa, Poisson’s ratio n ¼ 0.3, and mass

density rs ¼ 7800 kg/m3. The fluid is water with mass density rL ¼ 1000 kg/m3. For the first 10 modes, the predicted
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Table 1

Convergence study of natural frequencies (Hz), effect of the series terms N with M ¼ 15.

Mode N

n m 2 6 10 14 15 16

2 1 206.12 198.04 196.48 195.82 195.71 195.62

2 719.7 674.34 665.04 662.16 661.93 661.7

3 1 135.3 132.05 131.39 131.12 131.1 131.09

2 485.82 433.77 429.14 427.67 427.54 427.46

4 1 154.61 152.4 152 151.86 151.85 151.85

2 357.97 332.19 329.8 329.03 328.95 328.89

5 1 213.09 208.94 208.49 208.33 208.32 208.31

2 354.56 338.61 337.33 336.9 336.84 336.81

6 1 284.29 276.89 276.52 276.38 276.37 276.37

2 450.5 426.89 425.42 424.92 424.83 424.75

Table 2

Convergence study of natural frequencies (Hz), effect of the series terms M with N ¼ 15.

Mode M

n m 5 10 15 20 22

2 1 188.64 184.44 195.62 194.18 194.63

2 639.23 623.77 661.7 656.55 658.25

3 1 129.4 127.23 131.1 130.54 130.65

2 414.36 409.23 427.54 424.55 425.18

4 1 150.99 149.67 151.85 151.37 151.45

2 323 320.94 328.95 327.43 327.74

5 1 206.81 205.3 208.32 207.58 207.86

2 335.2 333.78 336.84 336.11 336.59

6 1 274.34 272.98 276.37 275.45 275.97

2 425.76 422.94 424.83 424.12 424.48

E. Askari, F. Daneshmand / Journal of Fluids and Structures 25 (2009) 389–405398
frequencies show good agreement with the experimental and numerical data of Mazúch et al. (1996). However, there are

some differences between the results. These differences are not more than 3.9% in comparison with the experiment data,

except for the mode shape (m ¼ 1 and n ¼ 2), and 4.6% when compared with the finite element results. For the mode

shape (m ¼ 1 and n ¼ 2), there is approximately 15% difference between the present results and the experimental

measurements for all filling ratios. Mazúch et al. (1996) also observed a similar discrepancy between their predictions

and the experimental measurements for the above-mentioned mode shape (m ¼ 1 and n ¼ 2) (see Table 4). These

discrepancies may be due to the sensitivity of the lower order modes to the boundary conditions existing in the

experiment. It was also reported by Mazúch et al. (1996) that the end of the cylindrical shell at the base was, probably,

not so perfectly fixed in the experiment as was supposed in the finite element model.
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Table 3

Coupled natural frequencies (Hz) of a partially fluid-filled cylindrical container without/with internal body.

Mode Without internal body With internal body

FEM This study FEM This study

1st 145.63(1,3) 146.07(1,3) 128.63(1,3) 131.1(1,3)

2nd 164.55(1,4) 165.07(1,4) 146.9(1,4) 151.85(1,4)

3rd 225.7(1,5) 225.49(1,5) 193.77(1,2) 195.71(1,2)

4th 225.97(1,2) 228.8(1,2) 199.05(1,5) 208.32(1,5)

5th 288.09(1,6) 293.83(1,6) 264.93(1,6) 276.37(1,6)

6th 335.81(2,5) 341.09(2,5) 321.22(2,4) 328.95(2,4)

7th 337.14(2,4) 343.5(2,4) 327.75(2,5) 336.84(2,5)

Table 4

Coupled natural frequencies (Hz) of a partially fluid-filled cylindrical container without internal body, compared with Mazúch et al.

(1996).

Mode Partially fluid-filled cylindrical container

H/L ¼ 0.5 H/L ¼ 0.7 H/L ¼ 1

(m,n) This study FEM This study FEM Exp. This study FEM Exp.

(1,3) 612 609.4 542.2 543.1 522 398.9 400.6 388

(1,2) 771.27 771.1 669.7 672.7 582 478.8 482.1 421

(1,4) 906.82 908.8 796.2 806.0 798 627.5 633.2 628

(1,5) 1311.7 1352.8 1151.6 1188.4 1196 1015.6 1033.0 1027

(2,4) 1280.1 1303.9 1239 1253.2 1244 1078.7 1110.6 1094

(1,1) 1659.6 1654.4 1405.8 1407.4 – 1035.4 1038.6 –

(2,5) 1555.2 1565.8 1534.5 1553.8 1546 1251.6 1304.2 1299

(2,3) 1508.5 1515.2 1422.2 1425.3 1394 1272.8 1286.9 1254

(1,6) 1757.4 1842.7 1616 1679.7 – 1524.2 1561.3 1546

(2,6) 2179.4 2189.0 2035.6 – – 1681.1 1762.6 1748
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3.2. Effect of fluid level

In order to study the effect of the fluid level on the natural frequencies of a partially fluid-filled cylindrical container

without and with internal body, a normalized natural frequency is defined as f2/f1, where f1 and f2 stand for the natural

frequencies of the empty and the partially fluid-filled container for the specific corresponding mode, respectively.

Fig. 3 shows the predicted natural frequencies of the partially water-filled cylindrical container as a function of filling

ratio (H/L) for various circumferential and axial mode numbers. From Fig. 3, it is seen that the frequencies decrease

with increasing filling ratio (H/L). For a specific circumferential and axial mode numbers, the frequency variations are

very similar for the partially fluid-filled container with and without internal body. But, the effect of the fluid level on the

natural frequencies for the partially water-filled container without internal body is less than the effect of the fluid level

on the natural frequencies for the fluid container with internal body. The natural frequencies of a completely fluid-filled

cylindrical container decrease by 60%, compared to those of empty container. For the axial mode number (m ¼ 1), the

effect of the fluid level is very small in lower filling ratios (H/Lo0.4). The effect of the fluid on the frequencies of the

partially fluid-filled container is stronger for modes with smaller circumferential and axial mode numbers n, m. This

conclusion is in agreement with the results obtained by Koval’chuk and Kruk (2006). As can be seen from Fig. 3, the

variations of the natural frequencies with fluid level also depend on the axial and circumferential mode numbers.

3.3. Effect of internal body radius

Fig. 4 shows the calculated natural frequencies of the partially water-filled cylindrical container as a function of

radius ratio b/a, for various circumferential and axial mode numbers. It is observed from Fig. 4 that the normalized
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Fig. 3. Effect of fluid level on natural frequencies for the partially fluid-filled container: (a) first axial mode (m ¼ 1) without internal

body, (b) first axial mode (m ¼ 1) with internal body, (c) second axial mode (m ¼ 2) without internal body, (d) second axial mode

(m ¼ 2) with internal body, (e) third axial mode (m ¼ 3) without internal body, (f) third axial mode (m ¼ 3) with internal body, (g)

fourth axial mode (m ¼ 4) without internal body, and (h) fourth axial mode (m ¼ 4) with internal body.
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natural frequencies decrease with increasing radius ratio (b/a). The effect of internal body radius on the frequencies of

the partially fluid-filled container is stronger for modes with smaller circumferential mode numbers n. The normalized

natural frequencies of the partially water-filled cylindrical container with radius ratio b/a ¼ 0.95 decrease about 40%,

compared to those of the fluid container without internal body where the maximum reduction is for the axial mode
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Fig. 4. Natural frequencies of the partially fluid-filled container as a function of radius ratio (b/a): (a) first axial mode (m ¼ 1), (b)

second axial mode (m ¼ 2), (c) third axial mode (m ¼ 3), and (d) forth axial mode (m ¼ 4) (f1 and f2 stand for the natural frequencies of

the partially fluid-filled container without and with internal body for the specific corresponding mode, respectively).
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number m ¼ 1. As can be seen from Fig. 4, the variations of the natural frequencies with radius ratio also depend on the

axial and circumferential mode numbers.

The wide-spacing approximation has proved a remarkably accurate tool for solving radiation and scattering

problems in water waves when more than one body is involved (Watson and Evans, 1991). The method is based on the

assumption that the bodies are sufficiently widely spaced for the local wave-field in the vicinity of one body not affecting

the others. It has been used by Ohkusu (1970) to consider the problem of two half-immersed cylinders and Srokosz and

Evans (1979) who considered two rolling plates. Now, as seen in Fig. 4, for the radius ratio 0ob/ao0.5, the internal

body has no effect on the natural frequencies of the fluid container. This indicates a good agreement between the

present method and the wide-spacing approximation.

3.4. Effect of internal body length

Fig. 5 shows the normalized natural frequencies of the partially water-filled cylindrical container as a function of

length ratio h/L, for various circumferential and axial mode numbers. As can be observed from Fig. 5, the natural

frequencies decrease with increasing length ratio. Consequently, the minimum frequencies are obtained when the fluid

domain is completely divided into two parts h/L ¼ 1. The effect of internal body length on the natural frequencies of the

partially fluid-filled container is stronger for modes with smaller circumferential mode numbers n. The normalized

natural frequencies of the partially fluid-filled container with length ratio (h/L ¼ 1) decrease about 25%, compared to

those of the fluid container without internal body. As can be seen from Fig. 5, the variations of the natural frequencies

with length ratio also depend on the axial and circumferential mode numbers.

3.5. Vibration mode shapes

The first four mode shapes having n ¼ 2 are shown in Fig. 6. Mode shapes are plotted for the container section

defined by y ¼ 0 and p. Obviously, the mode shapes are symmetric in this case. The natural frequencies of the
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Fig. 5. Natural frequencies of the partially fluid-filled container as a function of length ratio h/L: (a) first axial mode (m ¼ 1), (b)

second axial mode (m ¼ 2), (c) third axial mode (m ¼ 3), and (d) fourth axial mode (m ¼ 4) (f1 and f2 stand for the natural frequencies

of the partially fluid-filled container without and with internal body for the specific corresponding mode, respectively).

Fig. 6. First four modes having n ¼ 2 (circumferential wave number) for the partially fluid-filled container with internal body and their

natural frequencies. The corresponding natural frequencies (without internal body) are: (a) 230.9Hz, (b) 705.0Hz, (c) 1255.2Hz, and

(d) 1706.7Hz.
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Fig. 7. First four modes having n ¼ 3 (circumferential wave number) for the partially fluid-filled container and their natural

frequencies. The corresponding natural frequencies (without internal body) are: (a) 146.8Hz, (b) 459.2Hz, (c) 946.4Hz, and (d)

1436.5Hz.
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corresponding modes for the fluid container without internal body are also given in the caption to evaluate the effect of the

internal body. The first four mode shapes having n ¼ 3 are presented in Fig. 7. The modes are antisymmetric in this case.
4. Conclusions

Pursuing an analytically oriented method to consider the effects of a rigid internal body on the coupled vibration of a

partially fluid-filled cylindrical container, we developed a robust and efficient approach which captures the analytical

features of velocity potential in a continuous, simply connected, and non-convex fluid domain. It has many advantages

over traditional numerical schemes. Another very important advantage of this method is the possibility of testing and

analyzing numerous sizes of internal bodies within the container and, therefore, of drawing the necessary physical and

engineering conclusions.

In order to evaluate the dynamic characteristics of the fluid-coupled system, the effects of fluid level, internal body

radius, and internal body length on the natural frequencies were investigated. It was found that the increase of internal

body radius decreases the natural frequencies of the partially water-filled container. Also, the natural frequency of the

partially water-filled container decreases as the length ratio increases. The effects of fluid level, internal body radius, and

internal body length on the frequencies of the partially water-filled container vary with the mode numbers (n, m), i.e.,

this effect is stronger for modes with smaller circumferential and axial mode numbers.

The proposed analytical method was verified by experimental and numerical data and the results showed excellent

agreement. This method can also be extended to the fluid–structure interaction problems involving internal bodies with

different shapes.
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